Bivariant algebraic K-theory

نویسنده

  • ANDREAS THOM
چکیده

We show how methods from K-theory of operator algebras can be applied in a completely algebraic setting to define a bivariant, M∞-stable, homotopy-invariant, excisive Ktheory of algebras over a fixed unital ground ring H, (A, B) 7→ kk∗(A, B), which is universal in the sense that it maps uniquely to any other such theory. It turns out kk is related to C. Weibel’s homotopy algebraic K-theory, KH. We prove that, if H is commutative and A is central as an H-bimodule, then kk∗(H, A) = KH∗(A). We show further that some calculations from operator algebra KK-theory, such as the exact sequence of Pimsner-Voiculescu, carry over to algebraic kk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Kasparov K - theory . I

This paper is to construct unstable, Morita stable and stable bivariant algebraic Kasparov K-theory spectra of k-algebras. These are shown to be homotopy invariant, excisive in each variable K-theories. We prove that the spectra represent universal unstable, Morita stable and stable bivariant homology theories respectively. 2010 Mathematics Subject Classification: 19D99, 19K35, 55P42

متن کامل

Finite and Torsion Kk-theories

We develop a finite KK-theory of C∗-algebras following ArlettazH.Inassaridze’s approach to finite algebraic K-theory [1] . The BrowderKaroubi-Lambre’s theorem on the orders of the elements for finite algebraic K-theory [ , ] is extended to finite KK-theory. A new bivariant theory, called torsion KK-theory is defined as the direct limit of finite KK-theories. Such bivariant K-theory has almost a...

متن کامل

Retraction of the Bivariant Chern Character

We show that the bivariant Chern character in entire cyclic cohomology constructed in a previous paper in terms of superconnections and heat kernel regularization, retracts on periodic cocycles under some finite summability conditions. The trick is a bivariant generalization of the Connes-Moscovici method for finitely summable K-cycles. This yields concrete formulas for the Chern character of p...

متن کامل

Bott Periodicity in Topological, Algebraic and Hermitian K-theory

This paper is devoted to classical Bott periodicity, its history and more recent extensions in algebraic and Hermitian K-theory. However, it does not aim at completeness. For instance, the variants of Bott periodicity related to bivariant K-theory are described by Cuntz in this handbook. As another example, we don’t emphasize here the relation between motivic homotopy theory and Bott periodicit...

متن کامل

Algebraic K - Theory

We show how methods from K-theory of operator algebras can be applied in a completely algebraic setting to define a bivariant, M∞-stable, homotopy-invariant, excisive Ktheory of algebras over a fixed unital ground ring H, (A, B) 7→ kk∗(A, B), which is universal in the sense that it maps uniquely to any other such theory. It turns out kk is related to C. Weibel’s homotopy algebraic K-theory, KH....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006